Investigación Anestesia

sábado, 31 de octubre de 2009

Receptores de serotonina

La serotonina presenta una gran diversidad de efectos que son mediados por su unión a diversos receptores específicos de membrana. Tanto la serotonina como sus receptores están presentes en el sistema nervioso central y en el sistema nervioso periférico, así como en numerosos tejidos no neuronales del intestino, sistema cardiovascular y en células sanguíneas. Hasta el momento, se han identificado hasta siete miembros dentro de la familia de receptores de serotonina (5-HT1 a 5-HT7) y diversos subtipos incluidos en algunos de estos miembros. Ello ha conducido a la descripción y consideración de un total de hasta 14 tipos distintos (Hoyer y Martín, 1997). Estos receptores pertenecen a la superfamilia de receptores acoplados a proteínas G, con la excepción del receptor 5-HT3 que actúa a través de los mecanismos de los canales iónicos. Los receptores acoplados a proteínas G (G-protein coupled receptor, GPCR) llevan a cabo el proceso de transducción de señal a través de proteínas G, proteínas heterotriméricas, que tienen unido un nucleótido de guanidina. Estos receptores son proteínas integrales de membrana que forman una de las familias más extensas de proteínas transductoras de señal, y se destacan por su participación en un gran número de procesos fisiológicos. Estas proteínas responden a una gran variedad de estímulos, incluyendo señales sensoriales, hormonas y neurotransmisores, y son las responsables en muchos casos del control de la actividad enzimática, de los canales iónicos y del transporte vesicular. Las proteínas G son una familia de proteínas acopladas a sistemas efectores que se unen a GDP/GTP. Poseen tres subunidades (α, β, γ) por lo que son denominadas también heterotriméricas. La estructura heterotrimérica mantiene un estado inactivo, y en el estado activo se libera la subunidad α. La subunidad α posee un sitio de unión para el nucleótido guanina y actividad GTPasa. Se han identificado varios tipos de subunidades α: la subunidad αs, que estimula la enzima adenilato ciclasa, que cataliza la síntesis del segundo mensajero AMPc; la subunidad αi que inhibe la enzima adenilato ciclasa; y por último la subunidad αo que se encuentra implicada en la regulación de canales iónicos. Además de las mencionadas, existe otro tipo de proteína G, denominada Gq, constituida por las subunidades αq, β, γ, que en estado activo es capaz de estimular la actividad de la enzima fosfolipasa C, que cataliza la hidrólisis del fostatidilinositol bifosfato (PIP2) a partir de la cual se generan productos como el el diacilglicérido (DAG) y el inositol 1,4,5 trifosfato (IP3), que indirectamente incrementa la disponibilidad de Ca2+ intracelular. A continuación se va a realizar una breve descripción de los distintos receptores de 5-HT. En la Tabla 1 se expone un resumen de los aspectos farmacológicos y estructurales de dichos receptores, extraído de la revisión de Hoyer y Martín (1997). –

Mas información…

viernes, 30 de octubre de 2009

Efectos antiinflamatorios no dependientes de opiodes de la electroacupuntura a baja frecuencia

Es conocida la analgesia opiode-dependiente de la electroacupuntura (EA) con una baja frecuencia de estimulación, así como la inhibición de la expresión de la proteína Fos en el cuerno dorsal espinal (CDE), esta proteína es el producto del gen c-fos, considerado uno de los genes de expresión temprana candidatos para acoplar la excitación neuronal a las modificaciones adaptativas a largo plazo de la transcripción (2,3). La expresión de proteína Fos se utiliza como marcador del incremento de la actividad neuronal en respuesta a la inflamación y a los estímulos nociceptivos.
En este estudio se abolió el dolor con anestesia general y se creó un modelo para estudiar los efectos de la EA sobre la inflamación (2), los resultados demuestran inequívocamente que la inhibición causada por la EA de baja frecuencia sobre el edema inducido por carragenina (CA) y sobre la expresión de proteína Fos no dependen del sistema opiode al estar bloqueado por un antagonista no selectivo como la naloxona (4), que tampoco impidió la inhibición de la actividad neuronal Fos inmunorreactiva (Fos-IR) en láminas superficiales del cuerno dorsal, observada a las cuatro horas que siguieron a la inyección ipsilateral de CA. El incremento en la actividad neuronal que sigue a la injuria o sensibilización central es responsable de la hiperalgesia y la inflamación neurogénica. Se reporta una correlación positiva entre la cuantía del edema y el número de neuronas Fos-IR en el cuerno dorsal (3), hecho que sostiene la existencia de una asociación estrecha entre la severidad de la inflamación periférica y la extensión de la activación neuronal; la interrogante sería si la inhibición de proteína Fos por la EA es secundaria a la reducción del edema o viceversa. Estudios electrofisiológicos, previos demostraron que la inhibición central directa opiode-dependiente de la transmisión nociceptiva por EA o por Neuroestimulación Eléctrica Transcutánea (TENS) en cuerno posterior, es supresora de c fos (2,3,5); en el presente estudio la misma se encuentra bloqueada, por lo que la posibilidad de que el efecto inhibidor sobre la expresión de proteína Fos, al menos en parte, sea secundario a la inhibición de la inflamación periférica, es de considerar.
La actividad del sistema opiode es un fenómeno bien documentado durante la acupuntura (3,4,6,7), pues sus efectos son atenuados por la administración sistémica y la microinyección intracerebral de antagonistas, también se ha encontrado un incremento de opiodes en el líquido cefalorraquídeo (LCR) de humanos que sigue a su aplicación. La localización adyacente de neuronas contenedoras de Fos y neuronas betaendorfínicas positivas en el lóbulo anterior de la hipófisis, también sugiere que esta es activada por la acupuntura para incrementar la liberación de opiodes; sin embargo se ha observado que los efectos de la acupuntura sobre pacientes con dolor crónico son resistentes a la naloxona; al parecer los opiodes solo contribuyen al efecto pasajero de la acupuntura, mientras que el control que esta ejerce sobre muchos dolores clínicos complejos es no opiode dependiente (2). La observación que hacen los autores sobre la falta de efectividad de la EA aplicada después de establecida la inflamación, y su importante actividad antiinflamatoria al aplicarla 45 minutos antes de la administración intraplantar (i.pl.) de CA; perfiló un importante efecto profiláctico de relevancia clínica, que limitaría su utilización terapéutica. Existen reportes interesantes de la inefectividad del TENS, que posee algunos mecanismos similares a la EA, para reducir la inflamación articular inducida por CA y Kaolín (8), así como la nota clínica interesante sobre la utilización con mayor frecuencia de la EA en el período preoperatorio para tratar el dolor, la náuseas y vómitos del postoperatorio que en el postoperatorio mismo (9).
Algunas características del modelo de edema plantar inducido por CA lo catalogan como excelente para la evaluación de drogas antiinflamatorias (10). Es un procedimiento de tamizaje, pues se suceden una serie de complejas reacciones que involucran a múltiples mediadores, entre ellos: histamina, serotonina, metabolitos del ácido araquidónico vía ciclooxigenasa (COX), citocinas, neuropéptidos. y además la producción de especies reactivas de oxígeno está bien establecida (11-13). Durante los primeros 60 minutos después de la inyección de CA, se inicia la fase no fagocítica, caracterizada por injuria citoplasmática de mastocitos y su degranulación, lesión citoplasmática y de organelos de las células endoteliales de los vasos sanguíneos, así como expresión de interleucina 1 (IL-1) que atrae fagocitos al sitio de irritación (10). Un elemento clave en esta fase temprana es el incremento de sustancia P (SP). Posteriormente y secundaria a la fase anterior comienza la fase fagocítica. Más específicamente según el mediador predominante, se describen cuatro fases: una fase inicial en la que se liberan histamina y serotonina, una segunda fase mediada por cininas, una tercera fase (alrededor de las cinco horas) en la cual la liberación prostaglandinas (PGs) es predominante y una cuarta fase vinculada con infiltración local de neutrófilos y activación de ellos (12-17). El hallazgo de que el pre-tratamiento con EA inhiba el edema, es sugestivo de que pueda inhibir algunas de estas reacciones de la fase no fagocítica como la degranulación de los mastocitos, la expresión de IL-1 y el incremento de SP (14,18,19). Existen reportes de disminución de SP en la periferia, CDE, núcleo trigeminal, así como la reducción de IL-Iß en tejido sinovial y células del Bazo (15) en modelos de artritis en los que se aplicó la EA.

Mas información…

Papel de la vía del AMPc, de la proteína G y de las neurotrofinas en las acciones de los neurotransmisores

Durante la década de 1970 se llego a la conclusión de que no todas las acciones de las drogas psicotrópicas podían ser explicadas en términos de niveles de neurotransmisores y sus receptores: se empezó a dar más importancia al papel de los segundos mensajeros y las vías de transducción de señales intracelulares que mediaban las acciones de los neurotransmisores. La elucidación de esas vías han provisto un mejor entendimiento de la patofisiológias de las anormalidades neurológicas y conductuales. En el período comprendido entre 1976 y 1987 el tema se tornó más complejo: además de la regulación de los canales iónicos como parte de los efectos de los neurotransmisores, se demostró que todos los procesos que ocurren dentro de las neuronas son regulados por los mismos neurotransmisores a través de cascadas bioquímicas de mensajeros intracelulares, entre las que se encuentran las proteína de unión a GTP (proteínas G), los segundos mensajeros (AMPc, Ca2+ , óxido nítrico, fosfatidil inositol, ácido araquidónico) y las proteínas-kinasas y fosfatasas (proteínas que agregan o remueven grupo fosfatos de ditintas proteínas y alteran la respuesta biológica). Estas respuestas a los neurotransmisores varían en su duración y se pueden clasificar en: 1- Procesos rápidos (apertura o cierre de canales iónicos). 2- Procesos modulatorios de corto plazo (modulación del estado metabólico general de las neuronas, síntesis y liberación de neurotransmisores, funcionalidad de receptores). 3- Procesos modulatorios a largo plazo (regulación de la expresión génica) En el período comprendido entre 1987 y 1994, la complejidad del modelo siguió aumentando: se comprobó la participación de las neurotrofinas y sus receptores tirosinakinasa (a través de los cuales se producen sus efectos) en la neurotransmisión. Además, se encontró que preoteinas-kinasas citoplasmapáticas (ERKs y SRCs) están bajo control de señales extracelulares (como los neurotransmisores o las neurotrofinas) a través de procesos dependientes de segundos mensajeros. En la figura 3 se presenta un resumen esquemático de este complejo modelo (1,8). El alto grado de interacciones observado en esta figura sugiere que una perturbación primaria en una vía particular produce cambios en otras vías contribuyendo a muchas respuestas biológicas a partir de una perturbación inicial. Es decir que, aunque la mayoría de las drogas psicotrópicas interactuan inicialmente con distintas proteínas localizadas en el espacio extracelular de la sinapsis, sus acciones son producidas a través de las vías de mensajeros intracelulares que median las señales extracelulares. Papel de las cascadas de señalización de factores neurotróficos en las adaptaciones inducidas por drogas de abuso en el sistema dopaminérgico mesolímbico A principios de la década de 1990, los factores neurotróficos fueron estudiados ya que desempeñan un papel importante en el crecimiento y la diferenciación neuronal durante el desarrollo. Sin embargo, recién en los últimos años de esta década fue demostrado que los factores neurotróficos también estarían involucrados en la regulación de la transducción de señales en el cerebro adulto totalmente diferenciado así como en el mecanismo de adicción a drogas (3, 11, 15). En el VTA, el factor neurotrófico derivado del cerebro (BDNF) interactúa con su receptor TrkB que tiene la capacidad de autofosforilarce; este receptor activa una pequeña proteína G, Ras, que a su vez activa a una protrína-kinasa llamada Raf; esta proteína fosforila y activa otra proteína-kinasa, MEK, que fosforila y activa la protina–kinasa ERK.

Mas información…

jueves, 29 de octubre de 2009

Mecanismos neurobiológicos de la nocicepción y antinocicepción

NEUROBIOLOGÍA
Estos disturbios sensoriales denominados neuroplasticidad neuronal, han sido estrechamente ligados a alteraciones en la función del SNC, de los ganglios de las raíces dorsales, y las astas posteriores de la médula espinal. Diversas evidencias sugieren que después de un estímulo nocivo, neuropéptidos de las fibras C participan en la sensibilización central entre otros: la sustancia P, la neurokinina A, somatostatina , péptido del gen relacionado con la calcitonina (PRGC) o Calcitonin gen Related Peptid (PRGC) y galanina el cuerno dorsal de la médula espinal. De igual forma los aminoácidos excitatorios participan en la neuroplasticidad inducida por daño en la médula espinal y en el tálamo, corroborándose por el hecho de que ante un estímulo nocivo se liberan cantidades de glutamato y aspartato en la médula espinal y por el contrario la administración de antagonistas de estos aminoácidos la inhiben. Entre los mecanismos centrales de la nocicepción está la interacción entre los neuropéptidos y los aminoácidos excitatorios (EAAs) localizados en las terminales de las neuronas aferentes primarias. La SP produce una respuesta prolongada de las neuronas del cuerno dorsal a la aplicación iontoforética de glutamato o de NMDA. El tratamiento combinado con SP y NMDA produce una mejoría evidente de las respuestas de las neuronas del cuerno dorsal ante la estimulación mecánica nociva o inclusive a la no-nociva. En tanto la SP, la NK-A o el PRGC mejoran la liberación de glutamato y aspartato desde el cuerno dorsal de la médula espinal, la SP produce una potenciación del glutamato y el NMDA. Los datos anteriores muestran que los neuropéptidos y EAAs pueden contribuir a la neuroplasticidad en el SNC afectando el comportamiento nociceptivo, sin embargo la manera de como se producen estos cambios aún no es totalmente dilucidada. Es posible que los neuropéptidos y los EAAs ocasionen alteraciones en la excitabilidad de la membrana por medio de interacciones con sistemas de segundos mensajeros y cinasas proteicas, o produzcan un incremento del calcio intracelular en las neuronas nociceptivas influyendo en la excitabilidad de la célula. Por su parte el glutamato y el aspartato estimulan flujo de calcio a través de canales operados por los receptores NMDA. La SP contribuye a la elevación del calcio intracelular movilizando su liberación desde los almacenes celulares.

Mas información…

Efecto de la capsaicina sobre la producción de TNF-α en células mononucleares

Capsicum annuum, es una planta que pertenece a la familia Solanacea, conocida comúnmente como “ají de trueno”, un tipo de pimiento que es frecuentemente usado en la preparación de comidas de uso común en la selva de Bagua, en la región nororiental del Perú, pero, además es usada tradicionalmente en fitoterapia en forma de loción de uso tópico. Uno de sus principales componentes es la capsaicina (8-metil-N-vanilil-6-nonenamida; C18H27NO3), sustancia que pertenece a la familia de los vaniloides1,2.

La capsaicina estimula los termoceptores y nociceptores polimodales como el receptor de neuronas sensoriales cutáneas (Vanilloid Receptor 1, VR1), incrementando la liberación masiva de neuropéptidos, incluyendo la sustancia P, responsable de la transmisión de señales de dolor1,3.

Por tanto, inicialmente la capsaicina causaría dolor; sin embargo, este síntoma tiende a disminuir con aplicaciones sucesivas, las que reducen drásticamente los neuropéptidos y la inflamación4-6. Asimismo, la capsaicina ha demostrado un efecto antiinflamatorio al disminuirla producción de moléculas pro inflamatorias como la ciclooxigenasa tipo 2 (COX-2), prostaglandina (PGE2), óxido nítrico sintetasa inducible (iNOS), también causa alteraciones en las concentraciones de IkB, molécula que está implicada en la transcripción mediada por NFκB en macrófagos peritoneales murinos estimulados con LPS7. Sin embargo, su acción sobre citokinas pro o antiinflamatorias no ha sido previamente evaluada.

En este estudio demostramos que el tratamiento de células mononucleares de sangre periférica de ratas (CMSP) con capsaicina presenta un efecto antiinflamatorio al disminuir la producción de TNF-α una citokina pro inflamatoria, la cual tiene un papel importante en los procesos inflamatorios agudos y crónicos.

Mas información…

miércoles, 28 de octubre de 2009

Nuevas moléculas relacionadas con la nocicepción

La plasticidad neuronal, una característica esencial del sistema nervioso, es una “palabra murmurada” en la actual investigación del dolor. Las fluctuaciones en la expresión de los genes que reflejan cambios en las demandas funcionales sobre las neuronas individuales son un hecho cotidiano. En presencia de una inflamación periférica permanente, por ejemplo, la activación prolongada de las fibras C altera la pauta de transcripción génica en las células del ganglio de la raíz dorsal (GRD) y las neuronas del asta dorsal. Cuando se produce una lesión de los nervios periféricos, los cambios en la excitabilidad de las neuronas y los niveles de mRNA en las neuronas sensoriales crean las condiciones idóneas para que aparezca dolor crónico. Recientemente se han descubierto algunos mecanismos que contribuyen al aumento de la excitabilidad en el GRD.

Un ejemplo sorprendente es el de la capsaicina o receptor 1 vanilloide (VR1) que ha sido clonado y caracterizado (4). Curiosamente, los protones, cuya concentración aumenta en un entorno ácido (lo que ya se sabía que aumenta el efecto nocivo de la capsaicina), parecen ser ligandos endógenos de VR1 (5). Las marcadas similitudes funcionales entre la activación de VRl inducida por capsaicina y la inducida por calor indican que VR1 es el transductor fisiológico de los estímulos dolorosos producidos por el calor.

Las marcadas similitudes funcionales entre la activación de VR1 inducida por capsaicina y la inducida por calor indican que VR1 es el transductor fisiológico de los estímulos dolorosos producidos por el calor.

Recientemente se han descubierto unos canales sensibles a los protones, una familia de canales iónicos que se activan al aumentar la acidez del entorno (disminución del pH) (6,7). Estas proteínas, llamadas canales iónicos sensibles al ácido o ASICs, pueden dividirse en cinco subtipos, cada uno de ellos con unas características diferentes en términos de cinética de activación, dependencia del pH y especificidad tisular. Cuatro de esos subtipos se expresan en neuronas sensoriales de pequeño diámetro, convirtiéndoles en candidatos mediadores de la hiperalgesia en los tejidos inflamados y mal regados que se vuelven acidóticos.

Entre otras proteínas de los canales iónicos que se han clonado recientemente, el canal de sodio (Na+) resistente a tetrodotoxina (TTX) ha atraído la mayor atención por su localización en el sistema nervioso y su expresión únicamente después de alguna lesión neurológica (8,9). Este tipo de canal se encuentra principalmente en neuronas aferentes primarias desmielinizadas de pequeño diámetro. Los experimentos electrofisiológicos e inmunohistoquímicos realizados en ratones “bloqueados” (10) han sugerido que un canal Na+ resistente a TTX (llamado PN3 o específico de neuronas sensoriales, SNS), podría desempeñar un papel fundamental en los estados de dolor persistente, como dolor neuropático y dolor inflamatorio crónico.

Otra proteína de los canales iónicos que está implicada en la nocicepción es el receptor de la adenosinatrifosfato (ATP). Se sabe que el AT P d e s p o l a r i z a las neuronas sensoriales, y la liberación de AT P p o r parte del tejido dañado puede aumentar la activación de los nociceptores (11). Entre los diferentes miembros que componen la subfamilia de receptores del AT P llamada P2X se ha clonado y caracterizado el receptor P2X3 y se ha demostrado mediante hibridación in situ que se localiza en neuronas nociceptivas de pequeño tamaño. Considerando la localización anatómica de este canal y el efecto algésico del AT P, se ha sugerido que el canal P2X3 podría mediar la activación provocada por el AT P de pequeñas neuronas nociceptivas (l2).


Interacción de los receptores dopaminérgicos D4 y opioides tipo μ en el estriado

Sistema Opioide Endógeno

El sistema opioide endógeno está constituido por péptidos y sus receptores que están ampliamente distribuidos por el sistema nervioso central y periférico de mamíferos. Además de su función antinociceptiva (inhibición de la respuesta ante un estímulo doloroso), participa en la regulación de funciones fisiológicas como la respiración o el estado de vigilia, funciones cardiovasculares y endocrinas, así como la capacidad de afrontar situaciones de estrés (Bodnar y Klein, 2005).

Opioides endógenos

Los péptidos opioides endógenos se originan a partir de precursores proteicos tras un proceso de maduración enzimática (Rossier, 1988). Así, la proopiomelacortina (POMC) da lugar a las α- y β-endorfinas (Nakanishi et al., 1979); la proencefalina (PENK) es el precursor de las [Met] y [Leu]- encefalinas (Noda et al., 1982); la prodinorfina (PDYN) es fuente de las dinorfinas A y B (Kakidani et al., 1982); y la pronociceptina deriva en nociceptina u orfanina FQ (Meunier, 1997; Reinscheid et al., 1995). Recientemente se han descrito otros péptidos opioides endógenos, las endomorfinas 1 y 2, cuyo precursor no ha sido determinado todavía (Monory et al., 2000; Zadina et al., 1997; Zadina et al., 1999). El marcaje inmunohistoquímico para dinorfina se localiza principalmente en la corteza, CPu, Acb, hipocampo (HPC), hipotálamo y SN (Weber et al., 1982), mientras que en el caso de encefalina, ésta se expresa en corteza, CPu, Acb, hipotálamo, HPC, amígdala, SN y locus coeruleus (LC) (Finley et al., 1981; McGinty, et al., 1982; Miller y Pickel, 1980; Nylander y Terenius, 1987; Stengaard-Pedersen y Larsson, 1981). Las endorfinas se localizan en áreas cerebrales como son tálamo, hipotálamo, HPC, CPu, Acb y SN (Stengaard-Pedersen y Larsson, 1981). Las endomorfinas se han detectado en corteza, CPu, Acb, VP, amígdala, tálamo, VTA y SN (Martin-Schild et al., 1999). Por último, la nociceptina se localiza en corteza, HPC, amígdala, tálamo, VTA, SN y LC (Neal et al., 1999; Nothacker et al., 1996; Schulz et al., 1996). 3.2.

Receptores opioides

Existen tres familias principales de receptores opioides: receptores μ (MOR) (Chen et al., 1993; Thompson et al., 1993, Wang et al., 1993), receptores κ (KOR) (Li et al., 1993; Yasuda et al., 1993) y receptores δ (DOR) (Evanset al., 1992; Kieffer et al., 1992; Yasuda et al., 1993). En la década pasada, se describió una cuarta familia de receptores opioides, los denominados receptores ORL1 (orphan opioid-like receptors) (Fukuda et al., 1994; Mollereau et al., 1994; Wick et al., 1994). Los péptidos opioides endógenos no se unen de forma exclusiva a un solo tipo de receptor, sino que se unen a varios de ellos con distinta afinidad. Como se muestra en la tabla 1, la β- endorfina y las endomorfinas 1 y 2 son los ligandos principales de los receptores MOR, a los que también se unen con menos afinidad las encefalinas. [Leu]- y [Met]- encefalinas son los ligandos por excelencia de los receptores DOR, aunque éstos también pueden unir β-endorfina. Los receptores KOR unen principalmente dinorfina (Gerrits et al., 2003; Monory et al., 2000; Raynor et al., 1994). La nociceptina es el ligando específico de los receptores ORL1 (Fukuda et al., 1994; Lachowicz et al., 1995; Mollereau et al., 1994; 1995; Reinscheid et al., 1995). Los receptores opioides pertenecen a la familia de receptores transmembrana acoplados a proteínas G, por lo que presentan 7 dominios transmembrana unidos entre si mediante lazos proteicos extra e intracelulares (Chen et al., 1993; Kieffer etal., 1992; Li et al., 1993) (Fig. 6). Todos los receptores clonados hasta ahora están acoplados a proteínas Gi/o (Aghajanian y Wang, 1986; Kurose et al., 1983), por lo que funcionalmente inhiben la actividad del enzima adenilato ciclasa (AC) y disminuyen así los niveles celulares de AMPc. La distribución de los distintos tipos de receptores opioides en el sistema nervioso central ha sido descrita mediante técnicas autorradiográgicas, inmunohistoquímicas e hibridación in situ. Así, los receptores MOR se localizan principalmente en corteza, CPu, Acb, HPC, tálamo, amígdala, VTA, SN, área gris periacueductal (PAG) y LC (Fig. 7). La expresión de los receptores DOR se localiza en corteza, Tu, CPu, Acb, HPC y amígdala (Fig. 7). Los receptores KOR se expresan con mayor abundancia en Tu, CPu, Acb, tálamo, hipotálamo, amígdala, PAG y LC (Fig. 7). Finalmente, el receptor ORL-1 se expresa principalmente en corteza, amígdala, HPC, hipotálamo y LC (Anton et al., 1996; Bunzow et al., 1994; Fukuda et al., 1994; Lachowicz et al., 1995; Meunier, 1997; Mollereau et al., 1994). Como se puede apreciar, los receptores opioides se distribuyen ampliamente en el sistema nervioso central y se coexpresan en varios núcleos cerebrales (Elde et al., 1995; George et al., 1994; Mansour et al., 1987, 1994a; Tempel et al., 1987). Receptor opioide μ Como se ha mencionado anteriormente, los receptores MOR se localizan, entre otras zonas, en regiones relacionadas con las vías dopaminérgicas nigroestriatal y mesolímbica. Este tipo de receptor opioide presenta, tanto en roedores (Arvidsson et al., 1995; Kaneko et al., 1995; Mansour et al., 1995; Svingos et al., 1996), como en monos (Daunais et al., 2001) y en humanos (Peckys y Landwehrmeyer, 1999), un patrón de distribución en mosaico en el CPu, localizándose principalmente en los estriosomas y en los márgenes dorsolaterales bajo el cuerpo calloso (Fig. 8). A lo largo de los eje rostro-caudal y dorso-ventral del CPu se distinguen gradientes de expresión. Tanto en roedores como en primates, los estriosomas que expresan mayores niveles de receptor MOR están localizados en las regiones más rostrales del núcleo. Sin embargo, en roedores MOR se expresa con mayor abundancia en la región dorsal, mientras que en primates esto ocurre en la región ventral. En cuanto a la localización celular, tanto en el CPu como en el Acb, este receptor se expresa en los dos tipos de neuronas de proyección (Wang et al., 1996), aunque preferentemente en las neuronas estriatonigrales (Guttenberg et al., 1996). Recientemente Jabourian y colaboradores (2005) han demostrado su presencia en interneuronas colinérgicas en los estriosomas. A nivel subcelular, MOR se localiza fundamentalmente en la membrana plasmática de perfiles dendríticos y espinas dendríticas de neuronas estriatales, aunque también se ha descrito su expresión en axones y en somas en el Acb (Arvidsson et al., 1995; Moriwaki et al., 1996). Las dendritas reciben proyecciones glutamatérgicas de la corteza prefrontal y dopaminérgicas de la sustancia negra (SN), lo que sugiere que los receptores MOR están involucrados en la modulación postsináptica de la neurotransmisión corticoestrial y nigroestriatal y la regulación de la respuesta de las neuronas estriatales ante estos estímulos (Wang y Pickel, 1998). En la SN, tanto en roedores como en humanos, se ha descrito la localización de este receptor tanto en la región compacta como en la reticular (Mansour et al., 1987, 1995; Peckys y Landwehrmeyer, 1999; Sharif y Hughes, 1989; Tempel y Zukin, 1987), principalmente en varicosidades axónicas y en dendritas. El marcaje inmunohistoquímico es más denso en la SNC que en la SNR (Mansour et al., 1995; Peckys y Landwehrmeyer, 1999). A los receptores MOR se les ha asignado un papel fundamental en la regulación de la analgesia, en la toma de alimentos y en respuestas a situaciones de estrés emocional (Akil et al., 1984; Han et al., 2006; Matthes et al., 1996; Ribeiro et al., 2005; Vaught et al., 1982; Ward y Simansky, 2006), así como en la aparición de los fenómenos de recompensa por el consumo de morfina y de los síntomas asociados al síndrome de abstinencia a opiáceos (Matthes et al., 1996).

Mas información…